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1. Introduction

Supersymmetric solutions to supergravity theories have played, and continue to play, an

important role in string- and M-theory developments. This makes it desirable to obtain

a complete classification of BPS solutions to various supergravities in diverse dimensions.

Progress in this direction has been made in the last years using the mathematical concept

of G-structures [1]. The basic strategy is to assume the existence of at least one Killing

spinor ǫ obeying Dµǫ = 0, and to construct differential forms as bilinears from this spinor.

These forms, which define a preferred G-structure, obey several algebraic and differential

equations that can be used to deduce the metric and the other bosonic supergravity fields.

Using this framework, a number of complete classifications [2 – 4] and many partial results

(see e.g. [5 – 17] for an incomplete list) have been obtained. By complete we mean that the

most general solutions for all possible fractions of supersymmetry have been obtained, while

for partial classifications this is only available for some fractions. Note that the complete

classifications mentioned above involve theories with eight supercharges and holonomy

H = SL(2,H) of the supercurvature Rµν = D[µDν], and allow for either half- or maximally

supersymmetric solutions.
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An approach which exploits the linearity of the Killing spinors has been proposed [18]

under the name of spinorial geometry. Its basic ingredients are an explicit oscillator basis

for the spinors in terms of forms and the use of the gauge symmetry to transform them

to a preferred representative of their orbit. In this way one can construct a linear system

for the background fields from any (set of) Killing spinor(s) [19]. This method has proven

fruitful in e.g. the challenging case of IIB supergravity [20 – 22]. In addition, it has been

adjusted to impose ’near-maximal’ supersymmetry and thus has been used to rule out

certain large fractions of supersymmetry [23 – 27]. Finally, a complete classification for type

I supergravity in ten dimensions has been obtained in [28], and all half-supersymmetric

backgrounds of N = 2, D = 5 gauged supergravity coupled to abelian vector multiplets

were determined in [29, 30].

In the present paper we would like to address the classification of supersymmetric

solutions in four-dimensional N = 2 matter-coupled U(1)-gauged supergravity, generalizing

thus the simpler cases of N = 1, considered recently in [31, 32], and minimal N = 2, where

a full classification is available both in the ungauged [33] and gauged theories [34]. We shall

thereby focus on the class where the Killing vector constructed from the Killing spinor is

timelike, deferring the lightlike case to a forthcoming publication. Moreover, only coupling

to abelian vector multiplets and gauging of a U(1) subgroup of the SU(2) R-symmetry will

be considered, while the inclusion of hypermultiplets and nonabelian vectors, as well as a

general gauging, are left for future work [35].

The outline of this paper is as follows. In section 2, we briefly review N = 2 su-

pergravity in four dimensions and its matter couplings. In 3.1 we discuss the orbits of

Killing spinors and analyze the holonomy of the supercovariant connection. In section 4

we determine the conditions coming from a single timelike Killing spinor, and obtain all

supersymmetric solutions in this class. Finally, in section 5 we present our conclusions and

outlook. Appendices A and B contain our notation and conventions for spinors, while in

appendix C we show that the Killing spinor equations, together with the Maxwell equations

and the Bianchi identities, imply the equations of motion in the timelike case. Finally, in

appendix D we discuss the reduced holonomy of the three-dimensional manifold over which

the spacetime is fibered.

2. Matter-coupled N = 2, D = 4 gauged supergravity

In this section we shall give a short summary of the main ingredients of N = 2, D = 4

gauged supergravity coupled to vector- and hypermultiplets [36]. Throughout this paper,

we will use the notations and conventions of [37], to which we refer for more details.

Apart from the vierbein eaµ and the chiral gravitinos ψiµ, i = 1, 2, the field content

includes nH hypermultiplets and nV vector multiplets enumerated by I = 0, . . . , nV . The

latter contain the graviphoton and have fundamental vectors AIµ, with field strengths

F Iµν = ∂µA
I
ν − ∂νA

I
µ + gAKν A

J
µfJK

I .

The fermions of the vector multiplets are denoted as λαi and the complex scalars as zα

where α = 1, . . . , nV . These scalars parametrize a special Kähler manifold, i. e. , an nV -
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dimensional Hodge-Kähler manifold that is the base of a symplectic bundle, with the

covariantly holomorphic sections

V =

(

XI

FI

)

, DᾱV = ∂ᾱV − 1

2
(∂ᾱK)V = 0 , (2.1)

where K is the Kähler potential and D denotes the Kähler-covariant derivative.1 V obeys

the symplectic constraint

〈V , V̄〉 = XI F̄I − FIX̄
I = i . (2.2)

To solve this condition, one defines

V = eK(z,z̄)/2v(z) , (2.3)

where v(z) is a holomorphic symplectic vector,

v(z) =

(

ZI(z)
∂
∂ZI F (Z)

)

. (2.4)

F is a homogeneous function of degree two, called the prepotential, whose existence is

assumed to obtain the last expression. This is not restrictive because it can be shown that

it is always possible to go in a gauge where the prepotential exists via a local symplectic

transformation [37, 38].2 The Kähler potential is then

e−K(z,z̄) = −i〈v , v̄〉 . (2.5)

The matrix NIJ determining the coupling between the scalars zα and the vectors AIµ is

defined by the relations

FI = NIJX
J , DᾱF̄I = NIJDᾱX̄

J . (2.6)

Given

Uα ≡ DαV = ∂αV +
1

2
(∂αK)V , (2.7)

the following differential constraints hold:

DαUβ = Cαβγg
γδ̄Ūδ̄ ,

Dβ̄Uα = gαβ̄V ,
〈Uα ,V〉 = 0 . (2.8)

Here, Cαβγ is a completely symmetric tensor which determines also the curvature of the

special Kähler manifold.

1For a generic field φα that transforms under a Kähler transformation K(z, z̄) → K(z, z̄) + Λ(z) + Λ̄(z̄)

as φα → e−(pΛ+qΛ̄)/2φα, one has Dαφ
β = ∂αφ

β + Γβ
αγφ

γ + p
2
(∂αK)φβ. Dᾱ is defined in the same way. XI

transforms as XI → e−(Λ−Λ̄)/2XI and thus has Kähler weights (p, q) = (1,−1).
2This need not be true for gauged supergravity, where symplectic covariance is broken [36]. However,

in our analysis we do not really use that the FI can be obtained from a prepotential, so our conclusions

go through also without assuming that FI = ∂F (X)/∂XI for some F (X). We would like to thank Patrick

Meessen for discussions on this point.
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We now come to the hypermultiplets. These contain scalars qX and spinors ζA, where

X = 1, . . . , 4nH and A = 1, . . . , 2nH . The 4nH hyperscalars parametrize a quaternionic

Kähler manifold, with vielbein f iAX and inverse fXiA (i. e. the tangent space is labelled by

indices (iA)). From these one can construct the three complex structures

~J Y
X = −if iAX ~σ j

i f
Y
jA , (2.9)

with the Pauli matrices ~σ j
i (cf. appendix A). Furthermore, one defines SU(2) connections

~ωX by requiring the covariant constancy of the complex structures:

0 = DX
~J Z
Y ≡ ∂X ~J

Z
Y − ΓWXY

~J Z
W + ΓZXW ~J W

Y + 2 ~ωX × ~J Z
Y , (2.10)

where the Levi-Civita connection of the metric gXY is used. The curvature of this SU(2)

connection is related to the complex structure by

~RXY ≡ 2 ∂[X ~ωY ] + 2 ~ωX × ~ωY = −1

2
κ2 ~JXY . (2.11)

Depending on whether κ = 0 or κ 6= 0 the manifold is hyper-Kähler or quaternionic Kähler

respectively. In what follows, we take κ = 1.

The bosonic action of N = 2, D = 4 supergravity is

e−1Lbos =
1

16πG
R+

1

4
(ImN )IJF

I
µνF

Jµν − 1

8
(ReN )IJ e

−1ǫµνρσF IµνF
J
ρσ ,

−gαβ̄Dµz
αDµz̄β̄ − 1

2
gXY Dµq

XDµqY − V ,

−g
6
CI,JKe

−1ǫµνρσAIµA
J
ν

(

∂ρA
K
σ − 3

8
gfLM

KALρA
M
σ

)

, (2.12)

where CI,JK are real coefficients, symmetric in the last two indices, with ZIZJZKCI,JK =

0, and the covariant derivatives acting on the scalars read

Dµz
α = ∂µz

α + gAIµk
α
I (z) , Dµq

X = ∂µq
X + gAIµk

X
I . (2.13)

Here kαI (z) and kXI are Killing vectors of the special Kähler and quaternionic Kähler man-

ifolds respectively. The potential V in (2.12) is the sum of three distinct contributions:

V = g2(V1 + V2 + V3) ,

V1 = gαβ̄k
α
I k

β̄
J e

KZ̄IZJ ,

V2 = 2 gXY k
X
I k

Y
J e

KZ̄IZJ ,

V3 = 4(U IJ − 3 eKZ̄IZJ)~PI · ~PJ , (2.14)

with

U IJ ≡ gαβ̄eKDαZ
IDβ̄Z̄

J = −1

2
(ImN )−1|IJ − eKZ̄IZJ , (2.15)

and the triple moment maps ~PI(q). The latter have to satisfy the equivariance condition

~PI × ~PJ +
1

2
~JXY k

X
I k

Y
J − fIJ

K ~PK = 0 , (2.16)
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which is implied by the algebra of symmetries. The metric for the vectors is given by

NIJ(z, z̄) = F̄IJ + i
NINNJKZ

NZK

NLMZLZM
, NIJ ≡ 2 ImFIJ , (2.17)

where FIJ = ∂I∂JF , and F denotes the prepotential.

Finally, the supersymmetry transformations of the fermions to bosons are

δψiµ = Dµ(ω)ǫi − gΓµS
ijǫj +

1

4
ΓabF−I

ab ǫ
ijΓµǫj(ImN )IJZ

JeK/2 , (2.18)

Dµ(ω)ǫi =

(

∂µ +
1

4
ωabµ Γab

)

ǫi +
i

2
Aµǫ

i + ∂µq
XωX j

iǫj + gAIµPI j
iǫj , (2.19)

δλαi = −1

2
eK/2gαβ̄Dβ̄Z̄

I(ImN )IJF
−J
µν Γµνǫijǫ

j + ΓµDµz
αǫi + gNα

ijǫ
j ,

δζA =
i

2
fAiX ΓµDµq

Xǫi + gN iAǫijǫ
j ,

where we defined

Sij ≡ −P ijI eK/2ZI ,
Nα
ij ≡ eK/2

[

ǫijk
α
I Z̄

I − 2PIijDβ̄Z̄
Igαβ̄

]

, N iA ≡ −if iAX kXI e
K/2Z̄I .

In (2.19), Aµ is the gauge field of the Kähler U(1),

Aµ = − i

2
(∂αK∂µzα − ∂ᾱK∂µz̄ᾱ) − gAIµP

0
I , (2.20)

with the moment map function

P 0
I = 〈TIV , V̄〉 , (2.21)

and

TIV ≡
(

−fIJK 0

CI,KJ fIK
J

)(

XJ

FJ

)

. (2.22)

The major part of this paper will deal with the case of vector multiplets only, i. e. , nH = 0.

Then there are still two possible solutions of (2.16) for the moment maps ~PI , which are

called SU(2) and U(1) Fayet-Iliopoulos (FI) terms respectively [37]. Here we are interested

in the latter. In this case

~PI = ~e ξI , (2.23)

where ~e is an arbitrary vector in SU(2) space and ξI are constants for the I corresponding to

U(1) factors in the gauge group. If, moreover, we assume fIJ
K = 0 (abelian gauge group),

and kαI = 0 (no gauging of special Kähler isometries), then only the V3 part survives in the

scalar potential (2.14), and one can also choose CI,JK = 0. Note that this case corresponds

to a gauging of a U(1) subgroup of the SU(2) R-symmetry, with gauge field ξIA
I
µ.
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3. G-invariant Killing spinors in 4D

3.1 Orbits of spinors under the gauge group

A Killing spinor3 can be viewed as an SU(2) doublet (ǫ1, ǫ2), where an upper index means

that a spinor has positive chirality. ǫi is related to the negative chirality spinor ǫi by charge

conjugation, ǫCi = ǫi, with

ǫCi = Γ0C
−1ǫ∗i . (3.1)

Here C is the charge conjugation matrix defined in appendix B. As ǫ1 has positive chirality,

we can write ǫ1 = c1 + de12 for some complex functions c, d. Notice that c1 + de12 is in the

same orbit as 1 under Spin(3, 1), which can be seen from

eγΓ13eψΓ12eδΓ13ehΓ02 1 = ei(δ+γ)eh cosψ 1 + ei(δ−γ)eh sinψ e12 .

This means that we can set c = 1, d = 0 without loss of generality. In order to determine

the stability subgroup of ǫ1, one has to solve the infinitesimal equation

αcdΓcd1 = 0 , (3.2)

which implies α02 = α13 = 0, α01 = −α12, α03 = α23. The stability subgroup of 1 is thus

generated by

X = Γ01 − Γ12 , Y = Γ03 + Γ23 . (3.3)

One easily verifies that X2 = Y 2 = XY = 0, and thus exp(µX + νY ) = 1 + µX + νY , so

that X,Y generate R
2.

Having fixed ǫ1 = 1, also ǫ1 is determined by ǫ1 = ǫ1C = e1. A negative chirality

spinor independent of ǫ1 is ǫ2, which can be written as a linear combination of odd forms,

ǫ2 = ae1 + be2, where a and b are again complex valued functions. We can now act with

the stability subgroup of ǫ1 to bring ǫ2 to a special form:

(1 + µX + νY )(ae1 + be2) = be2 + [a− 2b(µ+ iν)]e1 .

In the case b = 0 this spinor is invariant, so the representative is ǫ1 = 1, ǫ2 = ae1 (so

that ǫ2 = ā1), with isotropy group R
2. If b 6= 0, one can bring the spinor to the form be2

(which implies ǫ2 = −b̄e12), with isotropy group I. The representatives4 together with the

stability subgroups are summarized in table 1. Given a Killing spinor ǫi, one can construct

the bilinear

VA = A(ǫi,ΓAǫi) , (3.4)

with the Majorana inner product A defined in (B.4), and the sum over i is understood.

For ǫ2 = ae1, VA is lightlike, whereas for ǫ2 = be2 it is timelike, see table 1. The existence

of a globally defined Killing spinor ǫi, with isotropy group G ∈ Spin(3, 1), gives rise to a

3Our conventions for spinors and their description in terms of forms can be found in appendix B.
4Note the difference in form compared to the Killing spinors of the corresponding theories in five and six

dimensions: in six dimensions these can be chosen constant [3] while in five dimensions they are constant

up to an overall function [24]. In four dimensions such a choice is generically not possible.
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(ǫ1, ǫ2) G ⊂ Spin(3, 1) G ⊂ Spin(3, 1) × U(1) VAE
A = A(ǫi,ΓAǫi)E

A

(1, 0) R
2 U(1) ⋉ R

2 −
√

2E−

(1, ae1) R
2

R
2 (a ∈ R) −

√
2(1 + a2)E−

(1, be2) I U(1)
√

2(|b|2E+ − E−)

Table 1: The representatives (ǫ1, ǫ2) of the orbits of Weyl spinors and their stability subgroups G

under the gauge groups Spin(3, 1) and Spin(3, 1)×U(1) in the ungauged and U(1)-gauged theories,

respectively. The number of orbits is the same in both theories, the only difference lies in the

stability subgroups and the fact that a is real in the gauged theory. In the last column we give the

vectors constructed from the spinors.

G-structure. This means that we have an R
2-structure in the null case and an identity

structure in the timelike case.

In U(1) gauged supergravity, the local Spin(3, 1) invariance is actually enhanced to

Spin(3, 1)×U(1). For U(1) Fayet-Iliopoulos terms, the moment maps satisfy (2.23), where

we can choose ex = δx3 without loss of generality. Then, under a gauge transformation

AIµ → AIµ + ∂µα
I , (3.5)

the Killing spinor ǫi transforms as

ǫ1 → e−igξIα
I
ǫ1 , ǫ2 → eigξIα

I
ǫ2 , (3.6)

which can be easily seen from the supercovariant derivative (cf. eq. (2.19)). Note that ǫ1

and ǫ2 have opposite charges under the U(1). In order to obtain the stability subgroup,

one determines the Lorentz transformations that leave the spinors ǫ1 and ǫ2 invariant up to

a arbitrary phase factors eiψ and e−iψ respectively, which can then be gauged away using

the additional U(1) symmetry. If ǫ2 = 0, one gets in this way an isotropy group generated

by X,Y and Γ13 obeying

[Γ13,X] = −2Y , [Γ13, Y ] = 2X , [X,Y ] = 0 ,

i. e. G ∼= U(1) ⋉ R
2. For ǫ2 = ae1 with a 6= 0, the stability subgroup R

2 is not enhanced,

whereas the I of the representative (ǫ1, ǫ2) = (1, be2) is promoted to U(1) generated by

Γ13 = iΓ•̄•. The Lorentz transformation matrix aAB corresponding to Λ = exp(iψΓ•̄•) ∈
U(1), with ΛΓBΛ−1 = aABΓA, has nonvanishing components

a+− = a−+ = 1 , a••̄ = e2iψ , a•̄• = e−2iψ . (3.7)

Finally, notice that in U(1) gauged supergravity one can choose the function a in ǫ2 = ae1
real and positive: Write a = R exp(2iδ), use

eδΓ131 = eiδ1 , eδΓ13ae1 = e−iδae1 = eiδRe1 ,

and gauge away the phase factor exp(iδ) using the electromagnetic U(1).

– 7 –
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Note that in the gauged theory the presence of G-invariant Killing spinors will in

general not lead to a G-structure on the manifold but to stronger conditions. The structure

group is in fact reduced to the intersection of G with Spin(3, 1), and hence is equal to the

stability subgroup in the ungauged theory.

The representatives, stability subgroups and vectors constructed from the Killing

spinors are summarized in table 1 both for the ungauged and the U(1)-gauged cases.

3.2 Generalized holonomy

The variation of the chiral gravitini under supersymmetry transformations is given

by (2.18). This can be rewritten in terms of Majorana spinors ψ
i
µ = ψiµ+ψiµ and ǫi = ǫi+ǫi,

where ψiµ and ǫi denote the charge conjugate of ψiµ and ǫi respectively. One has then

δψiµ = D̂µǫ
i =

(

∂µ +
1

4
ωabµ Γab

)

ǫi +
i

2
AµΓ5ǫ

i + ∂µq
X
[

ReωX j
i + iΓ5ImωX j

i
]

ǫj

+gAIµ
[

RePI j
i+iΓ5ImPI j

i
]

ǫj+gΓµe
K/2

[

Re
(

P ijI Z
I
)

−iΓ5Im
(

P ijI Z
I
)]

ǫj

+
1

4
Γ ·
[

Re
(

F−IZJ
)

+ iΓ5Im
(

F−IZJ
)]

ǫijΓµǫ
j(ImN )IJe

K/2 . (3.8)

From this it is evident that the holonomy of the supercovariant derivative D̂µ is contained

in GL(8,R), so that in principle one can have vacua that preserve any number N of su-

persymmetries with N = 0, 1, . . . 8. In the case without hypermultiplets, and for U(1) FI

terms with ~PI = ~e ξI and ex = δx3 , it is instructive to rewrite everything using complex

(Dirac) spinors ψµ = ψ1
µ + ψ2µ, ǫ = ǫ1 + ǫ2.

5 This yields

δψµ =

(

∂µ +
1

4
ωabµ Γab

)

ǫ+
i

2
AµΓ5ǫ+ igξIA

I
µǫ+ gΓµξI

[

ImXI + iΓ5ReXI
]

ǫ

+
i

4
Γ ·
[

Im
(

F−IXJ
)

− iΓ5Re
(

F−IXJ
)]

(ImN )IJΓµǫ (3.9)

as well as (introducing λα = λα2 + λα1
C)

δλα =
i

2
eK/2(ImN )IJΓ ·

[

Im
(

F−JDβ̄Z̄
Igαβ̄

)

− iΓ5Re
(

F−JDβ̄Z̄
Igαβ̄

)]

ǫ

+Γµ∂µ [Rezα − iΓ5Imz
α] ǫ+ 2geK/2ξI

[

Im
(

Dβ̄Z̄
Igαβ̄

)

− iΓ5Re
(

Dβ̄Z̄
Igαβ̄

)]

ǫ .

We see that in this case the complex conjugate spinor ǫ∗ does not appear in the

variation of the fermions, so that the supercovariant derivative has smaller holonomy

GL(4,C) ⊆ GL(8,R), and the number of preserved supercharges is necessarily even,

N = 0, 2, 4, 6, 8. The generalized holonomy group for vacua preserving N supersymme-

tries is then GL(8−N
2 ,C) ⋉

N
2 C

8−N
2 , like in minimal gauged supergravity [39, 34]. To see

this, assume that there exists a Killing spinor ǫ1.
6 By a local GL(4,C) transformation, ǫ1

can be brought to the form ǫ1 = (1, 0, 0, 0)T . This is annihilated by matrices of the form

A =

(

0 aT

0 A

)

,

5Note that one can reconstuct ψ1
µ and ψ2µ from ψµ by projecting on the two chiralities.

6The index of ǫ1 here should not be confused with an SU(2) index for chiral spinors.
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that generate the affine group A(3,C) ∼= GL(3,C) ⋉ C
3. Now impose a second Killing

spinor ǫ2 = (ǫ02, ǫ2)
T . Acting with the stability subgroup of ǫ1 yields

eAǫ2 =

(

ǫ02 + bT ǫ2
eAǫ2

)

, where bT = aTA−1
(

eA − 1
)

.

We can choose A ∈ gl(3,C) such that eAǫ2 = (1, 0, 0)T , and b such that ǫ02 + bT ǫ2 = 0. This

means that the stability subgroup of ǫ1 can be used to bring ǫ2 to the form ǫ2 = (0, 1, 0, 0).

The subgroup of A(3,C) that stabilizes also ǫ2 consists of the matrices











1 0 b2 b3
0 1 B12 B13

0 0 B22 B23

0 0 B32 B33











∈ GL(2,C) ⋉ 2C
2 .

Finally, imposing a third Killing spinor yields GL(1,C)⋉3C as maximal generalized holon-

omy group, which is however not realized in N = 2, D = 4 minimal gauged supergrav-

ity [11, 25].7 It would be interesting to see whether genuine preons (i.e., 3/4 supersymmetric

backgrounds that are not locally AdS) exist in matter-coupled supergravity.

4. Timelike representative (ǫ1, ǫ2) = (1, be2)

In this section we will analyze the conditions coming from a single timelike Killing spinor,

and determine all supersymmetric solutions in this class. We shall first keep things general,

i. e. , including hypermultiplets and a general gauging, and write down the linear system

following from the Killing spinor equations. This system will then be solved for the case

of U(1) Fayet-Iliopoulos terms and without hypers, while the solution in the general case

will be left for a future publication [35].

4.1 Conditions from the Killing spinor equations

From the vanishing of the hyperini variation one obtains

i√
2
fA1
X D•q

X +
ib√
2
fA2
X D−q

X − gN 2A = 0 , (4.1)

− i√
2
fA1
X D+q

X +
ib√
2
fA2
X D•̄q

X − gb̄N 1A = 0 , (4.2)

whereas the gaugino variation yields

b̄eK/2gαβ̄Dβ̄Z̄
I(ImN )IJ(F

−J••̄ − F−J+−) −
√

2D+z
α − gb̄Nα

12 = 0 , (4.3)

2b̄eK/2gαβ̄Dβ̄Z̄
I(ImN )IJF

−J+•̄ +
√

2D•z
α + gNα

11 = 0 , (4.4)

eK/2gαβ̄Dβ̄Z̄
I(ImN )IJ(F

−J+− − F−J••̄) + b
√

2D−z
α + gNα

21 = 0 , (4.5)

73/4 supersymmetric solutions of minimal gauged supergravity are necessarily quotients of AdS4, which

have been constructed in [40].
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−2eK/2gαβ̄Dβ̄Z̄
I(ImN )IJF

−J−• + b
√

2D•̄z
α − gb̄Nα

22 = 0 . (4.6)

Finally, from the gravitini we get

1

2
(ω+−

+ − ω••̄
+ ) +

i

2
A+ + ∂+q

XωX 1
1 + gAI+PI 1

1

−
√

2gbS12 +
b√
2
(F−I+− − F−I••̄)(ImN )IJZ

JeK/2 = 0 , (4.7)

−ω−•
+ − b̄∂+q

XωX 2
1 − gb̄AI+PI 2

1 −
√

2bF−I−•(ImN )IJZ
JeK/2 = 0 , (4.8)

−b̄ ω+•̄
+ + ∂+q

XωX 1
2 + gAI+PI 1

2 −
√

2gbS22 = 0 , (4.9)

−∂+b̄−
b̄

2
(ω••̄

+ − ω+−
+ ) − ib̄

2
A+ − b̄∂+q

XωX 2
2 − gb̄AI+PI 2

2 = 0 , (4.10)

1

2
(ω+−

− − ω••̄
− ) +

i

2
A− + ∂−q

XωX 1
1 + gAI−PI 1

1 = 0 , (4.11)

−ω−•
− − b̄∂−q

XωX 2
1 − b̄gAI−PI 2

1 +
√

2gS11 = 0 , (4.12)

−∂−b̄−
b̄

2
(ω••̄

− − ω+−
− ) − ib̄

2
A− − b̄∂−q

XωX 2
2 − b̄gAI−PI 2

2

+
√

2gS21 +
1√
2
(F−I••̄ − F−I+−)(ImN )IJZ

JeK/2 = 0 , (4.13)

−b̄ ω+•̄
− + ∂−q

XωX 1
2 + gAI−PI 1

2 +
√

2F−I+•̄(ImN )IJZ
JeK/2 = 0 , (4.14)

1

2
(ω+−

• − ω••̄
• ) +

i

2
A• + ∂•q

XωX 1
1 + gAI•PI 1

1 +
√

2bF−I+•̄(ImN )IJZ
JeK/2 = 0 , (4.15)

−ω−•
• − b̄∂•q

XωX 2
1 − b̄gAI•PI 2

1 −
√

2gbS12

+
b√
2
(F−I••̄ − F−I+−)(ImN )IJZ

JeK/2 = 0 , (4.16)

−b̄ ω+•̄
• + ∂•q

XωX 1
2 + gAI•PI 1

2 = 0 , (4.17)

−∂•b̄−
b̄

2
(ω••̄

• − ω+−
• ) − ib̄

2
A• − b̄∂•q

XωX 2
2 − gb̄AI•PI 2

2 −
√

2gbS22 = 0 , (4.18)

1

2
(ω+−

•̄ − ω••̄
•̄ ) +

i

2
A•̄ + ∂•̄q

XωX 1
1 + gAI•̄PI 1

1 −
√

2gS11 = 0 , (4.19)

−ω−•
•̄ − b̄∂•̄q

XωX 2
1 − b̄gAI•̄PI 2

1 = 0 , (4.20)

−b̄ ω+•̄
•̄ + ∂•̄q

XωX 1
2 + gAI•̄PI 1

2 −
√

2gS21

− 1√
2
(F−I+− − F−I••̄)(ImN )IJZ

JeK/2 = 0 , (4.21)

−∂•̄b̄−
b̄

2
(ω••̄

•̄ − ω+−
•̄ ) − ib̄

2
A•̄ − b̄∂•̄q

XωX 2
2

−b̄gAI•̄PI 2
2 +

√
2F−I−•(ImN )IJZ

JeK/2 = 0 . (4.22)

4.2 Geometry of spacetime

In order to obtain the spacetime geometry, we consider the spinor bilinears

V i
µ j = A(ǫi,Γµǫj) , (4.23)

where the Majorana inner product A is defined in (B.4). The nonvanishing components are

V 1
− 1 = −

√
2 , V 2

+ 2 =
√

2b̄b , V 1
• 2 =

√
2b , V 2

•̄ 1 =
√

2b̄ . (4.24)
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Note that V i
µ j = V j ∗

µ i , so that we can expand into a basis of hermitian matrices,

V i
µ j =

1

2
Vµδ

i
j + ~Vµ · ~σ i

j . (4.25)

This yields for the trace part

Vµdx
µ =

√
2(|b|2E+ − E−) , (4.26)

while the nonzero components of ~Vµ read

V 1
• =

b√
2
, V 1

•̄ =
b̄√
2
, V 2

• = − ib√
2
, V 2

•̄ =
ib̄√
2
, V 3

+ = − b̄b√
2
, V 3

− = − 1√
2
.

Using the identities

ωX i
j ∗ = −ωX j

i , PI i
j ∗ = −PI j i , Sij = Sji ,

it is straightforward to shew that the linear system (4.7) - (4.22) implies the following

constraints on the spin connection:

ω+−
+ = ∂+ ln(b̄b) = ∂−(b̄b) , ω+−

− = 0 , −b̄b ω+•̄
− + ω−•̄

− − ω+−
• = 0 ,

b̄b ω+−
• − ∂•(b̄b) − ω−•̄

+ + b̄b ω+•̄
+ = 0 , −b̄b ω+•̄

• + ω−•̄
• = 0 ,

−b̄b(ω+•̄
•̄ + ω+•

• ) + ω−•
• + ω−•̄

•̄ = 0 . (4.27)

These are ten real equations, which are easily shown to be equivalent to

∂AVB + ∂BVA − ωCB|AVC − ωCA|BVC = 0 , (4.28)

which means that V is Killing. Note that V 2 = −4b̄b, so V is timelike. Moreover, one

verifies that the system (4.7) - (4.22) yields the relations

dV x + ǫxyzAy ∧ V z = T x , (4.29)

with the gauged SU(2) connection

~Aµ = 2∂µq
X~ωX + 2gAIµ ~PI , (4.30)

where we switched from SU(2) indices to vector quantities using the conventions of

appendix A. The torsion tensor8 T x can be written as

T x = −ǫxyzBy ∧ V z , (4.31)

with the one-form By given by

B1
+ = −2

√
2g Im(bS22) , B1

− = −2
√

2g Im

(

S11

b̄

)

, B1
• = −2

√
2gi

b̄
Re(bS12) ,

B2
+ = −2

√
2gRe(bS22) , B2

− = 2
√

2gRe

(

S11

b̄

)

, B2
• = −iB1

• ,

B3
+ = −2

√
2g Im(bS12) , B3

− = −B
3
+

b̄b
, B3

• =

√
2gi

b̄
(bS22 − b̄S̄11) . (4.32)

8The reason for choosing this name will be explained in appendix D.
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Notice that we are free to include the torsion term in the SU(2) connection, by

rewriting (4.29) as

dV x + ǫxyz(Ay +By) ∧ V z = 0 , (4.33)

so that the forms V x are actually SU(2)-covariantly closed, similar to the ungauged

case [15]. If we define

A±
µ ≡ A1

µ ± iA2
µ ,

and similar for B, eqs. (4.9), (4.12), (4.17) and (4.20) can be cast into the form

b ω+•
+ = − i

2
(A+

+ +B+
+) , ω−•̄

− =
ib

2
(A−

− +B−
−) ,

ω−•̄
• =

ib

2
(A−

• +B−
• ) , b ω+•

•̄ = − i

2
(A+

•̄ +B+
•̄ ) . (4.34)

These equations relate the SU(2) to the spin connection, and tell us how the former is

embedded into the latter. Such an embedding is necessary for unbroken supersymmetry;

it leads to a (partial) cancellation of the SU(2) and spin connections in the gravitino

supersymmetry transformation, and generalizes the mechanism of [41, 42].

Let us now choose coordinates (t, x1, x2, x3) such that V = ∂t. The metric will then

be independent of t. Note that ∂t =
√

2 (|b|2∂− − ∂+). Making use of

ωX i
i = PI i

i = 0 ,

eqs. (4.7), (4.10), (4.11) and (4.13) give

∂t ln b = iAt , (4.35)

whose real part implies that |b| is time-independent. In terms of the vierbein EAµ the metric

is given by

ds2 = 2E+E− + 2E•E•̄ , (4.36)

where

E+
µ =

Vµ − 2V 3
µ

2
√

2|b|2
, E−

µ = −
Vµ + 2V 3

µ

2
√

2
, E•

µ =
V 1
µ + iV 2

µ√
2b

, E•̄
µ =

V 1
µ − iV 2

µ√
2b̄

.

From V 2 = −4|b|2 and V = ∂t as a vector we get Vt = −4|b|2, so that V = −4|b|2(dt + σ)

as a one-form, with σt = 0. Furthermore, V • = 0 yields E•
t = 0 and thus V 1

t = V 2
t = 0.

Since V and V 3 are orthogonal, V µV 3
µ = 0, also V 3

t vanishes, and hence V x
t = 0. The

metric (4.36) becomes thus

ds2 = −4|b|2(dt+ σ)2 + |b|−2δxyV
xV y . (4.37)

In order to proceed one would like to choose the gauge Ax
t +Bx

t = 0, which reduces to the

choice made in [15] for g → 0. Then the SU(2)-covariant closure of the V x (eq. (4.33)) states

that the SU(2) connection A+B and the V x are time-independent. Eq. (4.33) can then be

interpreted as Cartan’s first structure equation on the three-dimensional base space. One

therefore has to show that the above gauge is always possible. Let us at this point restrict
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to the case without hypers and no gauging of special Kähler isometries (kαI = 0). The

inclusion of hypermultiplets will be studied in a forthcoming publication [35]. This leaves

two possible solutions for the moment maps [37], namely SU(2) or U(1) Fayet-Iliopoulos

(FI) terms. We shall consider here the latter, which satisfy (2.23), where ex = δx3 without

loss of generality.9 One has then

PI 1
1 = −PI 2

2 = i ξI , PI 1
2 = PI 2

1 = 0 ,

S12 = S21 = i ξIZ
IeK/2 , S11 = S22 = 0 , (4.38)

as well as

A1
µ = A2

µ = 0 , A3
µ = 2gAIµξI . (4.39)

From (4.33) one obtains dV 3 = 0, like in minimal gauged supergravity [7, 34]. If we

choose the gauge A3
t + B3

t = 0, the one-forms V x will be time-independent. Note that

the U(1) gauge transformation (3.5) necessary to achieve this does not spoil our choice

of representatives: As discussed in section 3.1, the phase factors acquired by the Killing

spinors ǫi (eq. (3.6)) can be eliminated by a subsequent Spin(3, 1) transformation. The

above gauge condition implies

AIt ξI = −4 Im(bS12) , (4.40)

and is left invariant by transformations (3.5) with time-independent ξIα
I . As the SU(2)

connection A +B and the V x do not depend on t, one can regard (4.33) as Cartan’s first

structure equation on the three-dimensional base manifold with metric δxyV
xV y.

Next we consider the equations coming from the gaugino variation. Using

Nα
11 = Nα

22 = 0 , Nα
12 = Nα

21 = −2i ξIe
K/2Dβ̄Z̄

Igαβ̄ ,

and Dµz
α = ∂µz

α, eqs. (4.3) and (4.5) yield

∂tz
α = 0 ,

i. e. , the scalar fields are time-independent. Choosing the constants CI,JK = 0 and taking

into account that the structure constants fIJ
K vanish also, eqs. (2.21) and (2.22) imply for

the moment map function P 0
I = 0. But then from (2.20) one has for the Kähler U(1)

At = − i

2
(∂αK∂tzα − ∂ᾱK∂tz̄ᾱ) = 0 .

Plugging this into (4.35) gives ∂tb = 0, hence b is time-independent as well.

Notice that the system (4.7) - (4.22) allows to express the linear combinations AIξI
and F−I(ImN )IJZ

J of the gauge potentials and fluxes in terms of the spin connection,

the Kähler U(1), the linear combination of scalars ZIξI and the function b,

igAI+ξI =
1

2
ω••̄

+ +
i

2
A+ − 1

2
∂+ ln

b

b̄
, igAI−ξI =

1

2
ω••̄
− − i

2
A− ,

igAI•ξI =
1

2
(ω+−

• + ω••̄
• ) − i

2
A• , (4.41)

9ex = δx
3 can always be achieved by a global SU(2) rotation (which is a symmetry of the theory).
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F−I+•̄(ImN )IJZ
JeK/2 =

b̄√
2
ω+•̄
− , F−I−•(ImN )IJZ

JeK/2 = − 1√
2b
ω−•

+ ,

(F−I+− − F−I••̄)(ImN )IJZ
JeK/2 = −

√
2b̄ ω+•̄

•̄ − 2ig ξIe
K/2ZI . (4.42)

As the (nV + 1) × (nV + 1) matrix (XI ,DᾱX̄
I) is invertible [37], (4.42) together with the

gaugino equations (4.3)-(4.6) determine uniquely the fluxes F−I , with the result10

F−I+•̄ =

√
2

b
X̄I(∂• ln b̄+ iA•) +

√
2

b̄
DαX

I∂•z
α ,

F−I−• = −
√

2 b̄X̄I(∂•̄ ln b̄+ iA•̄) −
√

2 bDαX
I∂•̄z

α , (4.43)

F−I+− − F−I••̄ =
2
√

2

b
X̄I(∂+ ln b̄+ iA+) +

2
√

2

b̄
DαX

I∂+z
α + 2ig ξJ(ImN )−1|IJ .

Moreover, antiselfduality implies that

F−I+• = F−I−•̄ = F−I+− + F−I••̄ = 0 .

With (4.43), all gaugino equations are satisfied.

Furthermore, the system (4.7) - (4.22) determines almost all components of the spin

connection (with the exception of ω••̄) in terms of Aµ, Z
IξI , the function b and its spacetime

derivatives,

ω+−
+ = ∂+ ln(b̄b) , ω+−

− = 0 , ω+−
• = ∂• ln b̄+ iA• ,

ω+•
+ = ω+•

•̄ = 0 , ω+•
− = − 1

b̄b
(∂•̄ ln b− iA•̄) ,

ω+•
• = ∂− ln b− iA− +

2
√

2ig

b
ξIe

K/2Z̄I ,

ω−•
+ = −b ∂•̄b̄− ib̄bA•̄ , ω−•

− = ω−•
•̄ = 0 ,

ω−•
• = ∂+ ln b̄+ iA+ − 2

√
2gbi ξIe

K/2ZI . (4.44)

From the gauge condition (4.40) we obtain one more component, namely

ω••̄
t =

√
2(|b|2ω••̄

− − ω••̄
+ ) = −

√
2 ∂+ ln

b

b̄
+ 2

√
2iA+ − 4igξI(bX

I + b̄X̄I) . (4.45)

The next step is to impose vanishing spacetime torsion,

∂µE
A
ν − ∂νE

A
µ + ωAµBE

B
ν − ωAνBE

B
µ = 0 .

One finds that most of these equations are already identically satisfied, while the remaining

ones yield (using the expressions (4.44) for the spin connection)

dσ + ζxǫxyzV y ∧ V z = 0 , (4.46)

where the (real) SU(2) vector ζx is defined as

ζ1 + iζ2 = − 1√
2 b̄2b

(

i

2
∂•̄ ln

b

b̄
+A•̄

)

,

ζ3 =
1√
2|b|2

[

i

2
∂− ln

b

b̄
+A− −

√
2g ξIe

K/2

(

Z̄I

b
+
ZI

b̄

)]

. (4.47)

10To get this, one has to use (C.15).
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We already noted that dV 3 = 0, hence there exists a function z such that V 3 = dz locally.

Since V 3
t = 0, z must be time-independent. Let us use z as one of the coordinates x1, x2, x3,

say z = x3. The remaining spatial coordinates will be denoted by late small latin indices

m,n, . . ., i. e. , xm = x1, x2, while capital late latin indices M,N, . . . = 1, 2 refer to the

corresponding tangent space. One can eliminate the components VM
z by a diffeomorphism

xm = xm(x′
n
, z) ,

with

VM
m

∂xm

∂z
= −VM

z .

As the matrix VM
m is invertible,11 one can always solve for ∂xm/∂z. Notice that the

metric (4.37) is invariant under

t→ t+ χ(xm, z) , σ → σ − dχ ,

for an arbitrary function χ(xm, z). This second gauge freedom can be used to set σz = 0.

Thus, without loss of generality, we can take σ = σmdx
m, and the metric (4.37) becomes

ds2 = −4|b|2(dt + σmdx
m)2 + |b|−2

(

dz2 + δMNV
MV N

)

. (4.48)

The solution of the Cartan structure equation (4.29) is then given by

V 1
m + iV 2

m = (V̂ 1
m + iV̂ 2

m)

(

b

b̄

) 1
2

exp Φ , (4.49)

ω••̄
• =

|b|√
2
e−Φ(V̂ m

1 − iV̂ m
2 )
[

−iω̂m + ∂m(Φ̄ − ln |b|)
]

, (4.50)

where V̂M
m denote integration ”constants” depending only on xn but not on z, V̂ m

M is the

corresponding inverse zweibein, Φ is a complex function defined by

∂zΦ = 2igξI

(

X̄I

b
− XI

b̄

)

− ω••̄
z , (4.51)

and ω̂ ≡ ω̂12 is the spin connection following from the zweibein V̂M . At this point it

is convenient to use the residual U(1) gauge freedom of a combined local Lorentz and

electromagnetic gauge transformation to eliminate ω••̄
z . This is accomplished by the trans-

formation (3.7), with

ψ =
i

2

∫

dzω••̄
z .

Note that ψ is real, as it must be. Moreover, as ψ is time-independent, this does not spoil

the gauge choice (4.40). With ω••̄
z = 0, Φ is real. In what follows, we shall introduce

complex coordinates w = x1 + ix2, w̄ = x1 − ix2, and choose the conformal gauge for the

two-metric δMN V̂
M
m V̂ N

n , i. e. ,

δMN V̂
M
m V̂ N

n = e2γdwdw̄ , (4.52)

11This follows from
√−g = 2det(V M

m )/|b|2.
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where γ = γ(w, w̄). From (4.51) it is clear that Φ is defined only up to an arbitrary function

of w, w̄. This allows to absorb γ into Φ, so one can take γ = 0 without loss of generality.

Then the metric (4.48) simplifies to

ds2 = −4|b|2(dt + σ)2 + |b|−2
(

dz2 + e2Φdwdw̄
)

, (4.53)

with σ = σwdw + σw̄dw̄.

Defining the symplectic vector

I = Im
(

V/b̄
)

, (4.54)

where V is given in (2.1), eq. (4.46) can be cast into the form

dσ + 2 ⋆(3)〈I , dI〉 − ig

|b|2 ξI
(

X̄I

b
+
XI

b̄

)

e2Φdw ∧ dw̄ = 0 . (4.55)

Here ⋆(3) is the Hodge star on the three-dimensional base with dreibein V x. In the ungauged

case g = 0, (4.55) reduces correctly to the expression given in [15].

All that remains to be done at this point is to impose the Bianchi identities and the

Maxwell equations, which read respectively

dF I = 0 , dReG+
I = 0 , (4.56)

where G±
I = NIJF

±J . One finds that the Bianchi identities are equivalent to

4∂∂̄

(

XI

b̄
− X̄I

b

)

+ ∂z

[

e2Φ∂z

(

XI

b̄
− X̄I

b

)]

(4.57)

−2igξJ∂z

{

e2Φ
[

|b|−2(ImN )−1|IJ + 2

(

XI

b̄
+
X̄I

b

)(

XJ

b̄
+
X̄J

b

)]}

= 0 ,

while the Maxwell equations yield

4∂∂̄

(

FI
b̄

− F̄I
b

)

+ ∂z

[

e2Φ∂z

(

FI
b̄

− F̄I
b

)]

−2igξJ∂z

{

e2Φ
[

|b|−2ReNIL(ImN )−1|JL + 2

(

FI

b̄
+
F̄I
b

)(

XJ

b̄
+
X̄J

b

)]}

−8igξIe
2Φ

[

〈I , ∂zI〉 −
g

|b|2 ξJ
(

XJ

b̄
+
X̄J

b

)]

= 0 . (4.58)

Here we defined ∂ = ∂w, ∂̄ = ∂w̄. Note that imposing dF I = 0 is actually not sufficient; we

must also ensure that ξIF
I = ξIdA

I , because the linear combination ξIA
I is determined

by the Killing spinor equations (cf. eq. (4.41)). This gives the additional condition

2∂∂̄Φ=ge2Φ
[

iξI∂z

(

XI

b̄
− X̄I

b

)

+2g|b|−2ξIξJ(ImN )−1|IJ+4g

(

ξIX
I

b̄
+
ξIX̄

I

b

)

2

]

, (4.59)

which is slightly stronger than the contraction of (4.57) with ξI .
12

12Contracting (4.57) with ξI and using (4.51), one gets the derivative of (4.59) with respect to z.
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Finally, note that the integrability condition for (4.55), namely

2〈I ,∆(3)I〉 = ⋆(3)d

[

ig|b|−2ξI

(

XI

b̄
+
X̄I

b

)

e2Φdw ∧ dw̄
]

, (4.60)

where ∆(3) denotes the Laplacian on the three-dimensional base manifold, follow from the

Bianchi identities and the Maxwell equations. One can show this by using some relations

of special Kähler geometry.

In conclusion, the functions b and Φ together with the scalar fields are determined

by the equations (4.51), (4.57), (4.58) and (4.59). Then, the shift vector σ is obtained

from (4.55) and the metric is given by (4.53). The gauge fields can be read off from (4.43),

which can be rewritten as

F I = 2(dt+σ) ∧ d
[

bXI+b̄X̄I
]

+|b|−2dz ∧ dw̄
[

X̄I(∂̄b̄+iAw̄ b̄)+(DαX
I)b∂̄zα

−XI(∂̄b−iAw̄b)−(DᾱX̄
I)b̄∂̄z̄ᾱ

]

−|b|−2dz ∧ dw
[

X̄I(∂b̄+iAw b̄)

+(DαX
I)b∂zα−XI(∂b−iAwb)−(DᾱX̄

I)b̄∂z̄ᾱ
]

−1

2
|b|−2e2Φdw ∧ dw̄

[

X̄I(∂z b̄+iAz b̄)+(DαX
I)b∂zz

α−XI(∂zb−iAzb)

−(DᾱX̄
I)b̄∂z z̄

ᾱ−2igξJ (ImN )−1|IJ
]

. (4.61)

Notice that, in the timelike case, the vanishing of the supersymmetry variations, together

with the Bianchi identities and the Maxwell equations, imply all the equations of motion.

This is shown in appendix C.

In a forthcoming paper [43] we shall consider various models (specified by a certain pre-

potential), and give explicit solutions of the above equations that represent supersymmetric

AdS black holes with nontrivial scalar fields turned on.

5. Final remarks

In this paper, we applied spinorial geometry techniques to classify all supersymmetric

solutions of N = 2 gauged supergravity in four dimensions coupled to abelian vector

multiplets. Our results can be used to construct new BPS black holes in AdS4 with

nonconstant scalars. Such solutions are, to the best of our knowledge, unknown up to

now, and would be important to study the attractor mechanism in AdS [44]. This will be

the subject of a future publication [43].

Possible extensions of our work could be to impose the existence of more than one

Killing spinor and to determine how this constrains further the geometry of supersymmetric

backgrounds, as was done in the minimal case in [34]. It would also be interesting to see if

nontrivial preons (i.e., solutions with nearly maximal supersymmetry that are not simply

quotients of AdS) exist in matter-coupled gauged supergravity.

In refs. [45, 46], the N = 2, D = 4 theory coupled to non-abelian vector multiplets with

a gauge group that includes an SU(2) factor was considered, and various supersymmetric

solutions, such as embeddings of the ’t Hooft-Polyakov monopole and extremal black holes

were obtained. These geometries are asymptotically flat, and it would be very interesting
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to find similar solutions in the asymptotically AdS case, for instance in N = 2 supergravity

where the full SU(2) R-symmetry is gauged, which can induce a negative cosmological con-

stant. There are only very few analytically known Einstein-Yang-Mills black holes, and to

dispose of more solutions would of course be helpful in probing the validity of the no-hair

conjecture. Of particular relevance in this context are black holes with AdS asymptotics,

which were recently argued to require an infinite number of parameters for their descrip-

tion [47]. This is one of the reasons that make it desirable to systematically classify all

supersymmetric backgrounds of N = 2, D = 4 supergravity with general gauging. Work

in this direction is in progress [35].
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A. Conventions

We use the notations and conventions of [37], which are briefly summarized here. More

details can be found in appendix A of [37].

The signature is mostly plus. Late greek letters µ, ν, . . . are curved spacetime indices,

while early latin letters a, b, . . . = 0, . . . , 3 and A,B, . . . = +,−, •, •̄ refer to the correspond-

ing tangent space, cf. also appendix B.

Self-dual and anti-self-dual field strengths are defined by

F±I
ab =

1

2
(F Iab ± F̃ Iab) , F̃ Iab ≡ − i

2
ǫabcdF

Icd , (A.1)

where ǫ0123 = 1, ǫ0123 = −1. We also introduce

ǫµνρσ = e eµae
ν
b e
ρ
ce
σ
dǫ
abcd . (A.2)

The p-form associated to an antisymmetric tensor Tµ1...µp is

T =
1

p!
Tµ1...µpdx

µ1 ∧ . . . ∧ dxµp , (A.3)

and the exterior derivative acts as13

dT =
1

p!
Tµ1...µp,νdx

ν ∧ dxµ1 ∧ . . . ∧ dxµp . (A.4)

Antisymmetric tensors are often contracted with Γ-matrices as in Γ · F ≡ ΓabFab.

13Our definitions for p-forms, eq. (A.3), and for exterior derivatives, eq. (A.4), are the only points where

our conventions differ from those of [37].
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i, j, . . . = 1, 2 are SU(2) indices, whose raising and lowering is done by complex conju-

gation. The Levi-Civita ǫij has the property

ǫijǫ
jk = −δik , (A.5)

where in principle ǫij is the complex conjugate of ǫij , but we can choose ǫ = iσ2, such that

ǫ12 = ǫ12 = 1 . (A.6)

The Pauli matrices σxi
j (x = 1, 2, 3) are given by

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

. (A.7)

They allow to switch from SU(2) indices to vector quantities using the convention

Ai
j ≡ i ~A · ~σ j

i . (A.8)

At various places in the main text we use σ-matrices with only lower or upper indices,

defined by

~σij ≡ ~σ k
i ǫkj , i~σij = (i~σij)

∗ . (A.9)

Notice that both ~σij and ~σij are symmetric.

Spinors carrying an index i are chiral, e.g. for the supersymmetry parameter one has

Γ5ǫ
i = ǫi , Γ5ǫi = −ǫi , (A.10)

and the same holds for the gravitino ψiµ. Note however that for some spinors, the upper in-

dex denotes negative chirality rather than positive chirality, for instance the gauginos obey

Γ5λ
αi = −λαi , Γ5λ

α
i = λαi , (A.11)

as is also evident from the supersymmetry transformations. The charge conjugate of a

spinor χ is

χC = Γ0C
−1χ∗ , (A.12)

with the charge conjugation matrix C. Majorana spinors are defined by χ = χC , and

chiral spinors obey χCi = χi.

B. Spinors and forms

In this appendix, we summarize the essential information needed to realize the spinors of

Spin(3, 1) in terms of forms. For more details, we refer to [48]. Let V = R
3,1 be a real vector

space equipped with the Lorentzian inner product 〈·, ·〉. Introduce an orthonormal basis

e1, e2, e3, e0, where e0 is along the time direction, and consider the subspace U spanned by

the first two basis vectors e1, e2. The space of Dirac spinors is ∆c = Λ∗(U ⊗C), with basis

1, e1, e2, e12 = e1 ∧ e2. The gamma matrices are represented on ∆c as

Γ0η = −e2 ∧ η + e2⌋η , Γ1η = e1 ∧ η + e1⌋η ,
Γ2η = e2 ∧ η + e2⌋η , Γ3η = ie1 ∧ η − ie1⌋η , (B.1)
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where

η =
1

k!
ηj1...jkej1 ∧ . . . ∧ ejk

is a k-form and

ei⌋η =
1

(k − 1)!
ηij1...jk−1

ej1 ∧ . . . ∧ ejk−1
.

One easily checks that this representation of the gamma matrices satisfies the Clifford

algebra relations {Γa,Γb} = 2ηab. The parity matrix is defined by Γ5 = iΓ0Γ1Γ2Γ3, and

one finds that the even forms 1, e12 have positive chirality, Γ5η = η, while the odd forms

e1, e2 have negative chirality, Γ5η = −η, so that ∆c decomposes into two complex chiral

Weyl representations ∆+
c = Λeven(U ⊗ C) and ∆−

c = Λodd(U ⊗ C). Note that Spin(3, 1)

is isomorphic to SL(2,C), which acts with the fundamental representation on the positive

chirality Weyl spinors.

Let us define the auxiliary inner product

〈

2
∑

i=1

αiei,

2
∑

j=1

βjej

〉

=

2
∑

i=1

α∗
i βi (B.2)

on U ⊗ C, and then extend it to ∆c. The Spin(3, 1) invariant Dirac inner product is then

given by

D(η, θ) = 〈Γ0η, θ〉 . (B.3)

The Majorana inner product that we use is14

A(η, θ) = 〈Cη∗, θ〉 , (B.4)

with the charge conjugation matrix C = Γ12. Using the identities

Γ∗
a = −CΓ0ΓaΓ0C

−1 , ΓTa = −CΓaC
−1 , (B.5)

it is easy to show that (B.4) is Spin(3, 1) invariant as well.

The charge conjugation matrix C acts on the basis elements as

C1 = e12 , Ce12 = −1 , Ce1 = −e2 , Ce2 = e1 . (B.6)

In many applications it is convenient to use a basis in which the gamma matrices act

like creation and annihilation operators, given by

Γ+η ≡ 1√
2

(Γ2 + Γ0) η =
√

2 e2⌋η , Γ−η ≡ 1√
2

(Γ2 − Γ0) η =
√

2 e2 ∧ η ,

Γ•η ≡ 1√
2

(Γ1 − iΓ3) η =
√

2 e1 ∧ η , Γ•̄η ≡ 1√
2

(Γ1 + iΓ3) η =
√

2 e1⌋η . (B.7)

The Clifford algebra relations in this basis are {ΓA,ΓB} = 2ηAB , where A,B, . . . =

+,−, •, •̄ and the nonvanishing components of the tangent space metric read η+− = η−+ =

14It is known that on even-dimensional manifolds there are two Spin invariant Majorana inner products.

The other possibility, based on C = iΓ03, was used in [25].
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1 e1 e2 e1 ∧ e2
Γ+ 0 0

√
2 −

√
2e1

Γ−

√
2e2 −

√
2e1 ∧ e2 0 0

Γ•

√
2e1 0

√
2e1 ∧ e2 0

Γ•̄ 0
√

2 0
√

2e2
Γ+− 1 e1 −e2 −e1 ∧ e2
Γ•̄• 1 −e1 e2 −e1 ∧ e2
Γ+• 0 0 −2e1 0

Γ+•̄ 0 0 0 2

Γ−• −2e1 ∧ e2 0 0 0

Γ−•̄ 0 2e2 0 0

Table 2: The action of the Gamma matrices and the Lorentz generators ΓAB on the different basis

elements.

η••̄ = η•̄• = 1. The spinor 1 is a Clifford vacuum, Γ+1 = Γ•̄1 = 0, and the representation

∆c can be constructed by acting on 1 with the creation operators Γ+ = Γ−,Γ
•̄ = Γ•, so

that any spinor can be written as

η =

2
∑

k=0

1

k!
φā1...āk

Γā1...āk1 , ā = +, •̄ .

The action of the Gamma matrices and the Lorentz generators ΓAB is summarized in

table 2.

Note that ΓA = UA
aΓa, with

(UA
a) =

1√
2











1 0 1 0

−1 0 1 0

0 1 0 −i
0 1 0 i











∈ U(4) ,

so that the new tetrad is given by EA = (U∗)AaE
a.

C. BPS equations and equations of motion

We will now show that the vanishing of the supersymmetry variations, plus Bianchi

identities and Maxwell equations, imply all equations of motion in the timelike case, and

all but one in the null case. Without hypermultiplets, the equations of motion are (here

we set 8πG = 1)

• Einstein

0 = Eµν :=
1

2
Rµν + (ImN )IJF

+I
ρµ F

−Jρ
ν − gαβ̄Dµz

αDν z̄
β̄ − 1

2
gµνV ; (C.1)
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• Maxwell15

0 = Mν
I := −2∇µ

(

(ImN )IJF
−Jµν

)

+ i∂µNIJ F̃
Jµν − ggαβ̄k

α
I Dν z̄β̄

−ggαβ̄kβ̄IDνzα − g2

4e
CJ,IKǫ

νµρσAJµF
K
ρσ; (C.2)

• Scalars

0 = Gα := ∇̃µDµzα − gAIµ∇̃µk
α
I +

1

2i
F+I
µν F

+Jµνgαγ̄∂z̄γ̄NIJ

− 1

2i
F−I
µν F

−Jµνgαγ̄∂z̄γ̄ N̄IJ − gαγ̄∂z̄γ̄V , (C.3)

where with ∇̃ we mean the covariant derivative with respect to the metric connection

on both the spacetime and the target manifold of the scalars. Finally

V = g2eK
[

kαI k
β̄
Jgαβ̄Z̄

IZJ + 4
(

gαβ̄DαZ
IDβ̄Z̄

J − 3Z̄IZJ
)

~PI · ~PJ
]

(C.4)

is the scalar potential.

We set

D̂µǫ
i = Dµ(ω)ǫi − gΓµS

ijǫj +
1

4
ΓabF−I

ab ǫ
ijΓµ(ImN )IJZ

JeK/2ǫj . (C.5)

where Dµ(ω) is defined in (2.19). Then, the gravitini Killing equation is

D̂µǫ
i = 0 , (C.6)

and its integrability is given by the (holonomy) condition

0 =
[

D̂µ , D̂µ

]

ǫi = D̂µ

(

D̂νǫ
i
)

− D̂ν

(

D̂µǫ
i
)

. (C.7)

Denoting

Fµν := ∂µAν − ∂νAµ ,

Φab := ZJeK/2(ImN )IJF
−Iab ,

Φ̄ab := Z̄JeK/2(ImN )IJF
+Iab , (C.8)

and making use of (A.10), we find

0 =
1

4
R ab
µν Γabǫ

i +
i

2
Fµνǫ

i + gF IµνP
i

Ij ǫ
j + gAIν∂µP

i
Ij ǫ

j − gAIµ∂νP
i

Ij ǫ
j

−2g2ΓµνS
rS̄sδrsǫ

i + 2g(S̄ijΦµν − SijΦ̄µν)ǫ
j +

[

−1

2
Φ b
ν Φ̄ d

µ Γbd

+
1

2
Φ b
µ Φ̄ d

ν Γbd−
1

2
ΦabΦ̄µνΓab+

1

2
Φ b
a Φ̄ a

µ Γbν−
1

2
Φ b
a Φ̄ a

ν Γbµ

]

ǫi−gΓν∂µSijǫj

+gΓµ∂νS
ijǫj +

1

4
Γabǫij(∇µΦabΓν −∇νΦabΓµ)ǫj − igAµΓνS

ijǫj

+igAνΓµS
ijǫj +

1

4
AµΓ

abΦabΓνǫ
ijǫj −

1

4
AνΓ

abΦabΓµǫ
ijǫj . (C.9)

15We used the Bianchi identities to put the equations in this form.
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Let us now contract this equation with Γµ. This leads to

0 =
1

2
RνbΓ

bǫi +
i

2
ΓµFµνǫ

i + gΓµF IµνP
i

Ij ǫ
j + gAIνΓ

µ∂µP
i

Ij ǫ
j

− gAIµΓ
µ∂νP

i
Ij ǫ

j − 6g2ΓνS
rSsδrsǫ

i + 2gΓµ(S̄ijΦµν − SijΦ̄µν)ǫ
j

− 2Φ̄ b
a Φa

νΓbǫ
i − gΓµν∂µS

ijǫj + 3g∂νS
ijǫj − igAµΓ

µSijǫj

+ 3igAνS
ijǫj + (∇µΦ

µc +AµΦ
µc)ǫij(Γcν + ecν)ǫj , (C.10)

where we used

F I+abF J−ab = 0 , (C.11)

F I+a[b F
J−a

c] = 0 . (C.12)

At this point we need to make contact with the equations of motion. To do this, let us

first take the gaugini Killing equation (multiplied with Γλ)

0 = − 2eK/2gαβ̄Dβ̄Z̄
I(ImN )IJF

−IλµΓµǫijǫ
j + ΓλΓµDµz

αǫi

+ gΓλeK/2
[

ǫijk
α
I Z̄

I − 2PIijD̄β̄Z̄
Igαβ̄

]

ǫj , (C.13)

and contract it with eK/2DαZ
L(ImN )KLF

+K
λµ ǫil. This yields

0 = − 2eKgαβ̄Dβ̄Z̄
IDαZ

L(ImN )IJ(ImN )KLF
−IλµF+K

λµ Γµǫ
l

+ eK/2DαZ
L(ImN )KLF

+K
λµ ΓλΓµDµz

αǫilǫi

+ gΓλeKDαZ
L(ImN )KLF

+K
λµ ǫil

[

ǫijk
α
I Z̄

I − 2PIijD̄β̄Z̄
Igαβ̄

]

ǫj . (C.14)

Now add this to eq. (C.10). Using the relation

gαβ̄eKDαZ
IDβ̄Z̄

J = −1

2
(ImN )−1|IJ − eKZ̄IZJ , (C.15)

we see that the first term of (C.14) sums up with the term −2Φ̄ b
a Φa

νΓbǫ
i of (C.10) to give

(ImN )IJF
+I
ρµ F

−Jρ
ν Γµ .

Some other useful relations are (XI = eK/2ZI)

P 0
I = −eKCI,JKZKZ̄J , (C.16)

XJkαJDαX
I + iP 0

JX
JXI = 0 , (C.17)

and (2.6), from which one also obtains the important identity

XJ∂µNIJ = −2iDαX
J ImNIJ ∂µz

α . (C.18)

After summing up (C.10) and (C.14) and using the above relations we finally find16

E b
ν Γbǫ

i − 1

2
XIMµ

I ǫ
ijΓµΓνǫj = 0 . (C.19)

16This calculation involves a rather mastodontic amount of algebraic manipulations, as well as the use of

some further identities of special Kähler geometry that can be found in [37].
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Imposing the Maxwell equations one remains with the condition

E b
ν Γbǫ

i = 0 . (C.20)

At this point one can proceed in a standard way (see for example [2]). If the Killing spinor

is timelike, then (C.20) implies that the Einstein equations are identically satisfied. In

the other case, if the Killing spinor is null, thus selecting a null direction “+”, then the

equation E++ = 0 must be imposed.

In a similar way we can handle the gaugini equations:

0 = δλαi = −1

2
eK/2gαγ̄Dγ̄Z̄

I(ImN )IJF
−J
λρ Γλρǫijǫ

j + ΓµDµz
αǫi + gNα

ijǫ
j . (C.21)

In this case the story is much longer and can be summarized as follows. Let us first apply

the operator ΓµDµ(ω) (see (2.19)) to (C.21), contracted with gβ̄α. Using (C.5) we get

0 = − 1

2
Γµ∂µ

[

eK/2Dβ̄Z̄
I(ImN )IJF

−J
λρ Γλρ

]

ǫijǫ
j

− 1

8
Γµωabµ Γabe

K/2Dβ̄Z̄
I(ImN )IJF

−J
λρ Γλρǫijǫ

j

+
1

8
ΓµeK/2Dβ̄Z̄

I(ImN )IJF
−J
λρ Γλρωabµ Γabǫijǫ

j

− 1

2
eKF−L

ab F
−JabDβ̄Z̄

I(ImN )IJ(ImN )LMZ
Mǫi

+ ∇µ(gβ̄αDµzα)ǫi + 2ggβ̄αΓµDµz
αSijǫ

j

− 1

2
gβ̄αΓ

abF+I
ab (ImN )IJ Z̄

JeK/2ΓµDµz
αǫijǫ

j

+ gΓµ∂µ(Nβ̄ij)ǫ
j + 4g2Nβ̄ijS

jlǫl . (C.22)

At this point there are many possible manipulations which lead to the desired result.

However, the most complicated task is to recognize the derivatives of the scalar potential

V . To simplify such an effort, it is convenient to express the term ∇µ(gβ̄αDµzα) in terms

of Gα by means of (C.3).

A faster way is to work out the first term of (C.22) as follows:

−1

2
Γµ∂µ

[

eK/2Dβ̄Z̄
I(ImN )IJF

−J
λρ Γλρ

]

ǫijǫ
j=−1

2
Γµ∂µ

[

eK/2Dβ̄Z̄
I(ImN )IJ

]

F−J
λρ Γλρǫijǫ

j

−eK/2Dβ̄Z̄
I(ImN )IJ∇µF

−JµρΓρǫijǫ
j , (C.23)

where we used the relation

Γabc = −iΓ5ǫabcdΓ
d , (C.24)

and the Bianchi identities. Then, we can use (C.2) to rewrite the last term in (C.23) in

terms of Mµ
I , so that (C.22) takes the form

gβ̄αG
αǫi +

1

2
eK/2Dβ̄Z̄

IMν
I ǫijΓνǫ

j + · · · = 0 . (C.25)
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Next, all the remaining manipulations are very similar to the gravitino case, and have

the aim to show that the terms indicated by dots vanish identically, so that we will not

report the details here. We only mention that sometimes we found it convenient to use

XI = eK/2ZI in place of ZI to simplify many expressions. Also, the Killing equations for

kαI (and its conjugate) are often useful in taking account of the Christoffel symbols for the

covariant derivative on the scalar target manifold. Both (C.21) and its charge conjugate

must be used to eliminate many terms.

As we have anticipated, the final result is that (C.22) reduces to

gβ̄αG
αǫi +

1

2
eK/2Dβ̄Z̄

IMν
I ǫijΓνǫ

j = 0 . (C.26)

Thus, if the Maxwell equations hold, the scalar fields satisfy their equations of motion as

well. Note that the results of this appendix could also be obtained by the Killing spinor

identity approach [49, 50].

D. Holonomy of the base manifold

In order to gain a deeper geometrical understanding of the three-dimensional base space

with dreibein V x, some considerations concerning its holonomy are in order. First of all,

note that in minimal ungauged N = 2, D = 4 supergravity, the base is flat [33] and thus

has trivial holonomy. This is still true if one couples the theory to vector multiplets [4].

In five-dimensional minimal ungauged supergravity, the base manifold is hyper-Kähler [2],

whereas in the gauged case it is Kähler [6]. Thus, the general pattern in the timelike case

is to have a fibration over a base with reduced holonomy. One might therefore ask whether

our three-dimensional manifold with metric

ds23 = dz2 + e2Φdwdw̄ , (D.1)

appearing in (4.53), has reduced holonomy. Eqs. (4.32) and (4.38) suggest that the Christof-

fel connection A+B (cf. (4.33)) has full holonomy SO(3). In fact, the only nontrivial sub-

group of SO(3) is U(1), and integrating the first Cartan structure equation for a Christoffel

connection taking values in u(1), one finds the metric (D.1) with ∂zΦ = 0, which in general

will not be the case. From (4.39), however, it is evident that the connection A (which

has nonvanishing torsion, cf. (4.29)), takes values in u(1) ⊆ so(3). The same holds for the

corresponding curvature. We can thus interpret the base space as a manifold of reduced

holonomy U(1) ⊆ SO(3) with nonzero torsion. Reduced holonomy is equivalent to the ex-

istence of parallel tensors, the simplest example being the reduction of GL(D,R) to SO(D)

if the metric is covariantly constant, ∇g = 0. In our case, the corresponding parallel tensor

is just the vector ∂z: One easily checks that ∇∂z = 0, where ∇ denotes the covariant

derivative associated to A.

This is, to the best of our knowledge, the first example of a supersymmetric background

that leads to a base space of reduced holonomy for a non-Christoffel connection. Note also

that the torsion of this connection is due to the gauging, and not related to the presence

of vector multiplets. This is evident from (4.32), which yields vanishing torsion in the

ungauged case g = 0.
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[14] J. Belloŕın and T. Ort́ın, All the supersymmetric configurations of N = 4, D = 4 supergravity,

Nucl. Phys. B 726 (2005) 171 [hep-th/0506056].

[15] M. Huebscher, P. Meessen and T. Ort́ın, Supersymmetric solutions of N = 2 D = 4 SUGRA:

the whole ungauged shebang, Nucl. Phys. B 759 (2006) 228 [hep-th/0606281].
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